Interplay between plasmons and the band structure for the Mo(112) surface
نویسندگان
چکیده
منابع مشابه
Adjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons
Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...
متن کاملThe surface relaxation and band structure of Mo(112).
The experimental and theoretical surface band structures of Mo(112) are compared. This surface band structure mapping is presented with corrections included for the lattice relaxation of the Mo(112) surface. Quantitative low energy electron diffraction (LEED) has been used to determine the details of the Mo(112) surface structure. The first layer contraction is 14.9% by LEED intensity versus vo...
متن کاملMorphological and electronic properties of ultrathin crystalline silica epilayers on a Mo„112... substrate
Ultrathin crystalline silica layers grown on a Mo~112! substrate have been shown to be a useful silica model oxide support in surface science model catalyst studies. As the oxide support material plays an important role in the catalytic process, a multitechnique surface science study is presented to characterize the morphological and electronic properties of the heteroepitaxial system SiO2 /Mo(...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کامل